159 research outputs found

    Ground-State Phase Diagram of Frustrated Anisotropic Quantum Spin Chains

    Full text link
    Recent studies on the frustrated quantum spin chains with easy-plane anisotropy are reviewed. We are particularly interested in novel "chiral" phases characterized by the spontaneous breaking of the parity symmetry. The ground-state phase diagrams of the chains are discussed.Comment: 6 pages (ptptex.sty), 3 figures, to appear in Prog. Theor. Phys. Suppl. (Proc. of the 16th Nishinomiya-Yukawa Symposium and YITP International Workshop, Nov. 2001

    NMR relaxation rate in the field-induced octupolar liquid phase of spin-1/2 J1-J2 frustrated chains

    Full text link
    In the spin-1/2 frustrated chain with nearest-neighbor ferromagnetic exchange J1 and next-nearest-neighbor antiferromagnetic exchange J2 under magnetic field, magnetic multipolar-liquid (quadrupolar, octupolar, and hexadecapolar) phases are widely expanded from the saturation down to a low-field regime. Recently, we have clarified characteristic temperature and field dependence of the NMR relaxation rate 1/T_1 in the quadrupolar phase. In this paper, we examine those of 1/T_1 in the octupolar phase combining field theoretical method with numerical data. The relevance of the results to quasi one-dimensional J1-J2 magnets such as PbCuSO4(OH)2, Rb2Cu2Mo3O12 and Li2ZrCuO4 is shortly discussed.Comment: 6 pages (1 column), 3 figure

    Structural Analysis and Control of a Model of Two-site Electricity and Heat Supply

    Full text link
    This paper introduces a control problem of regulation of energy flows in a two-site electricity and heat supply system, where two Combined Heat and Power (CHP) plants are interconnected via electricity and heat flows. The control problem is motivated by recent development of fast operation of CHP plants to provide ancillary services of power system on the order of tens of seconds to minutes. Due to the physical constraint that the responses of the heat subsystem are not necessary as fast as those of the electric subsystem, the target controlled state is not represented by any isolated equilibrium point, implying that stability of the system is lost in the long-term sense on the order of hours. In this paper, we first prove in the context of nonlinear control theory that the state-space model of the two-site system is non-minimum phase due to nonexistence of isolated equilibrium points of the associated zero dynamics.Instead, we locate a one-dimensional invariant manifold that represents the target controlled flows completely. Then, by utilizing a virtual output under which the state-space model becomes minimum phase, we synthesize a controller that achieves not only the regulation of energy flows in the short-term regime but also stabilization of an equilibrium point in the long-term regime. Effectiveness of the synthesized controller is established with numerical simulations with a practical set of model parameters

    Boundary contributions to specific heat and susceptibility in the spin-1/2 XXZ chain

    Full text link
    Exact low-temperature asymptotic behavior of boundary contribution to specific heat and susceptibility in the one-dimensional spin-1/2 XXZ model with exchange anisotropy 1/2 < \Delta \le 1 is analytically obtained using the Abelian bosonization method. The boundary spin susceptibility is divergent in the low-temperature limit. This singular behavior is caused by the first-order contribution of a bulk leading irrelevant operator to boundary free energy. The result is confirmed by numerical simulations of finite-size systems. The anomalous boundary contributions in the spin isotropic case are universal.Comment: 6 pages, 3 figures; corrected typo

    Spin-Nematic and Spin-Density-Wave Orders in Spatially Anisotropic Frustrated Magnets in a Magnetic Field

    Full text link
    We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional spatially anisotropic magnets consisting of weakly-coupled frustrated spin-1/2 chains with nearest-neighbor and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-dimensional edge-shared cuprate magnets such as LiCuVO4 is discussed.Comment: 5 pages (2 column version), 4 figures, Revtex, published versio

    Renormalization of impurity scattering in one-dimensional interacting electron systems in magnetic field

    Full text link
    We study the renormalization of a single impurity potential in one-dimensional interacting electron systems in the presence of magnetic field. Using the bosonization technique and Bethe ansatz solutions, we determine the renormalization group flow diagram for the amplitudes of scattering of up- and down-spin electrons by the impurity in a quantum wire at low electron density and in the Hubbard model at less than half filling. In the absence of magnetic field the repulsive interactions are known to enhance backscattering and make the impurity potential impenetrable in the low-energy limit. On the contrary, we show that in a strong magnetic field the interaction may suppress the backscattering of majority-spin electrons by the impurity potential in the vicinity of the weak-potential fixed point. This implies that in a certain temperature range the impurity becomes almost transparent for the majority-spin electrons while it is impenetrable for the minority-spin ones. The impurity potential can thus have a strong spin-filtering effect.Comment: 11 pages, 2 figures; v2: a typo corrected and a reference added; v3: published version, Sec.II revised with an additional explanatory subsection, comments on the case of more than half-filling added, typos corrected, a reference update

    Chiral order of spin-1/2 frustrated quantum spin chains

    Get PDF

    Dilute-Bose-Gas Approach to ground state phases of 3D quantum helimagnets under high magnetic field

    Full text link
    We study high-field phase diagram and low-energy excitations of three-dimensional quantum helimagnets. Slightly below the saturation field, the emergence of magnetic order may be mathematically viewed as Bose-Einstein condensation (BEC) of magnons. The method of dilute Bose gas enables an unbiased quantitative analysis of quantum effects in three-dimensional helimagnets and thereby three phases are found: cone, coplanar fan and an attraction-dominant one. To investigate the last phase, we extend the usual BEC approach so that we can handle 2-magnon bound states. In the case of 2-magnon BEC, the transverse magnetization vanishes and long-range order occurs in the quadrupolar channel (spin-nematic phase). As an application, we map out the phase diagram of a 3D helimagnet which consists of frustrated J1-J2 chains coupled by an interchain interaction J3.Comment: 4pages, 3figures, International Conference on Magnetism (ICM) 2009 (Karlsruhe, Germany, July 26-31, 2009)

    Field and temperature dependence of the NMR relaxation rate in the magnetic quadrupolar liquid phase of spin-1/2 frustrated ferromagnetic chains

    Full text link
    It is generally difficult to experimentally distinguish magnetic multipolar orders in spin systems. Recently, it was proposed that the temperature dependence of the nuclear magnetic resonance relaxation rate 1/T_1 can involve an indirect, but clear signature of the field-induced spin nematic or multipolar Tomonaga-Luttinger (TL) liquid phase [Phys. Rev. B79, 060406(R) (2009)]. In this paper, we evaluate accurately the field and temperature dependence of 1/T_1 in spin-1/2 frustrated J1-J2 chains combining field-theoretical techniques with numerical data. Our results demonstrate that isotherms of 1/T_1 as a function of magnetic field also exhibit distinctive non-monotonic behavior in spin nematic TL liquid, in contrast with the standard TL liquid in the spin-1/2 Heisenberg chain. The relevance of our results to quasi one-dimensional edge-sharing cuprate magnets, such as LiCuVO4, is discussed.Comment: 11 pages (2 column), 5 figures, published versio
    • …
    corecore